

printed L-PBF GRCop-42; (C) & (F) Micrographs of as-printed L-PBF GRCop-84 channels at (F); (D) & (E) Micrographs of as-printed GRCop-42 channels showing partial closure due fusion (D), and high as-printed granular roughness (E)

	Novel Surface Finishing Additively Manufactured
ials	
ace waviness	for Fusion Reactor A
200.3 µm 0.0	Dr. Agustin Diaz ^A , Justin Michaud ^A , Dr. Stephen Wukitch ^B , Dr. And ^A REM Surface Engineering, ^B MIT Plasma Scie
1737.3 1500.0 500.0	
0.0µm 0.0µm	
^{142.3} μm 1500.0 1500.0 0.0μm	Surface Engineering
T [289.59µm]	PS FC Plasma Science a Massachusetts I
K	Novel Surface Finishing Re
(C) Micrographs of a (E) Micrographs of a	 Traditional Methods are Inadequate Chemical Milling = lacks requisite re
) & (G) Micrographs rthogonal cut (F), and	 Abrasive Mass Finishing = not viabl Machining = line-of-sight limitation
g significant granular	 Electropolishing = highly non-unifo
laser-based layer lines	internal surfaces
	Novel Approach
r ₂ Nb) ¹	 Individual and/or combinatory app (CP) and Chemical-Mechanical Polis CP = chemical dissolution with enh
cmallorICE	Geometrically agnostic & cap
	reduction; some waviness ma
	 CIVIP = applicable to complex interr
near surface	generating near-mirror surface rou Utilizes self-limiting, self-ass to lower the required force t Exceptional planarization ca
tries can be	Surface planarization of GRCop-
	A 20
C	15
	Ê 10
250.00µm	
	0 40 90 140 190
	^{33μm}
250.00µm	$B \\ C \\ $
asurements of as-	
to excess powder	 Figure 3: (A) Roughness reduction versus surface material removal graph Micrographs of L-PBF GRCop-42 after CP showing elimination of granular PBF GRCop-84 Waveguide after CP+ CMP (courtesy of MIT PSFC)

Approach for **RF** Components *pplications*

Patrick McFadden^A drew Seltzman^B ience Fusion Center

d Fusion Center stitute of Technology

equirement

- roughness reduction
- le on interior/internal surfaces
- orm material removal through
- plication of Chemical Polishing ishing (CMP)
- nanced planarization capabilities bable of substantial roughness ay remain
- nal geometries & capable of Jghness
- sembling monolayer (SAM) reaction to affect material removal
- apability; can eliminate waviness
- -42 via CP

n for L-PBF GRCop-42 processed via CP; (B) & (C) r roughness and substantial planarization; (D) L-

High Field Side Lower Hybrid Coupler

- profile control²
- superalloys⁴
- requirements for these applications⁴
- desired RF performance^{4,5}

Chemistry, SAM Forms

Gentle Rubbi **Removes SAM**

Figure 5: (A) Hot fire testing of 7K LLAMA rocket engine with L-PBF GRCop-42 combustion chamber with REM's CP+CMP surface finishing⁸; (B) 7K LLAMA combustion chamber (courtesy of NASA MSFC); (C) L-PBF GRCop-42 as-printed (top) and after CP cooling channels; (D) Process outline of the CMP process

¹ Ellis, D.L., "GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications", NASA/TM2005-213566 ² Bonoli, P.T., Wukitch, S.J., "PMI Challenges and Path towards RF Sustainment of Steady State Fusion Reactor Plasmas", https://burningplasma.org/activities/uploads_tec/FESAC_TEC_Wukitch_HFS-LHCD.pdf ³ P.R. Gradl, C. S. Protz, D. L. Ellis, S. E. Greene, "Progress in Additively Manufactured Copper-Alloy GRCOP-84, GRCOP-42, and Bimetallic Combustion Chambers for Liquid Rocket Engines". 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. ⁴ A.H. Seltzman, S.J. Wukitch, "RF losses in selective laser melted GRCop-84 copper waveguide for an additively manufactured lower hybrid current drive launcher", Fusion Engineering and Design, Volume 159, 2020, 111762, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2020.111762. https://www.sciencedirect.com/science/article/pii/S0920379620303100 ⁵ A.H. Seltzman, S.J. Wukitch, "Surface roughness and finishing techniques in selective laser melted GRCop-84 copper for an additive manufactured lower hybrid current drive launcher", Fusion Engineering and Design, Volume 160, 2020, 111801, ISSN 0920-3796, https://doi.org/10.1016/j.fusengdes.2020.111801. (https://www.sciencedirect.com/science/article/pii/S0920379620303495) ⁶ S. Ghouse, S. Babu, R. J. Van Arkel, K. Nai, P. A. Hooper, J. R. T. Jeffers. Materials & Design, 131, 498 (2017). ⁷ R. Wagener, B. Möller, T. Melz, and M. Scurria, in SAE Tech. Pap. (SAE International, 2019). ⁸ <u>https://www.nasa.gov/centers/marshall/news/releases/2020/3d-printed-rocket-engine-parts-survive-23-hot-fire-</u> tests.html

Potential for higher current drive efficiency & better current

Cu alloys are ideal for RF launchers vs. steel or Ni-Cr

L-PBF is advantageous for fabrication of enclosed structure and large material removal/thin-wall component

Low roughness surfaces (~0.3 µm Ra) are required to achieve

Addition of Burnish Chemistr Eliminates SAM/Cleans Part

References