Laser Powder Bed Fusion (L-PBF)
* Advanced manufacturing technique
. Freeform fabrication/complex shape capability
. Suitable for difficult to machine/fabricate materials
*  Produces high levels of granular roughness/surface waviness
e  Commonly produces near surface porosity
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EBM Ti-6Al-4V surface showing significant melt-pool derived roughness/waviness; (D) & (E) Micrographs of a
L-PBF Ti-6Al-4V samples showing contour-hatch interface porosity at ~160 um depth; (F) & (G) Micrographs
of etched cross-sections of L-PBF AISi10Mg samples showing the microstructure of an orthogonal cut (F), and
a parallel cut (G) along the build direction’; (H) & (I) Micro X-ray CT Scan composites showing subsurface
porosity of L-PBF A6061-R2 (H), and IN-625 (1); (J) Micrograph of L-PBF Ti-6Al-4V showing significant granular
roughness and surface waviness; and (K) Micrograph of L-PBF 17-4 PH showing defined laser-based layer lines

GRCop-84 & GRCop42

. Novel dispersion strengthening copper alloys (Cr,Nb)*

Stable up to at least 800° C!

. Maintains tensile strength up to/above 700 ° C!

. Low thermal expansion = lower creep stress & smaller LCF
strain ranges =2 increased life vs. other Cu alloys?

Demonstrated printability via L-PBF*3

Exhibit equal or greater as-printed roughness & near surface
porosity versus more common L-PBF alloys

»  Powder removal/blockage from complex geometries can be
an issue
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Figure 2: (A) L-PBF GRCop-42 Combustion Chamber3; (B) Micrograph and roughness measurements of as-
printed L-PBF GRCop-42; (C) & (F) Micrographs of as-printed L-PBF GRCop-84 channels at 100x (C), and 200x
(F); (D) & (E) Micrographs of as-printed GRCop-42 channels showing partial closure due to excess powder

fusion (D), and high as-printed granular roughness (E)

Novel Surface Finishing Requirement

“le  Traditional Methods are Inadequate

. Chemical Milling = lacks requisite roughness reduction

. Abrasive Mass Finishing = not viable on interior/internal surfaces

. Machining = line-of-sight limitations

. Electropolishing = highly non-uniform material removal through
internal surfaces

. Novel Approach
. Individual and/or combinatory application of Chemical Polishing
(CP) and Chemical-Mechanical Polishing (CMP)

. CP = chemical dissolution with enhanced planarization capabilities
. Geometrically agnostic & capable of substantial roughness
reduction; some waviness may remain

. CMP = applicable to complex internal geometries & capable of
generating near-mirror surface roughness

. Utilizes self-limiting, self-assembling monolayer (SAM) reaction
to lower the required force to affect material removal
. Exceptional planarization capability; can eliminate waviness
A Surface planarization of GRCop-42 via CP
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Figure 3: (A) ﬁoughness reduction versus surface material removal graph for L-PBF GRCop-42 processed via CP; (B) & (C)
Micrographs of L-PBF GRCop-42 after CP showing elimination of granular roughness and substantial planarization; (D) L-
PBF GRCop-84 Waveguide after CP+ CMP (courtesy of MIT PSFC)

High Field Side Lower Hybrid Coupler
Potential for higher current drive efficiency & better current
profile control?
Cu alloys are ideal for RF launchers vs. steel or Ni-Cr
superalloys?
L-PBF is advantageous for fabrication of enclosed structure
and large material removal/thin-wall component
requirements for these applications®
Low roughness surfaces (~0.3 um Ra) are required to achieve
desired RF performance*?
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Figure 4: (A) & (B) Schematic representation Lower Hybrid Current Drive (LHCD) Launcher*>; (C) L-PBF
GRCop-84 Poloidal Splitter (courtesy of MIT PSFC)
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Figure 5: (A) Hot fire testing of 7K LLAMA rocket engine with L-PBF GRCop-42 combustion chamber with
REM’s CP+CMP surface finishing®; (B) 7K LLAMA combustion chamber (courtesy of NASA MSFC); (C) L-PBF
GRCop-42 as-printed (top) and after CP cooling channels; (D) Process outline of the CMP process
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